Chromatic Gallai identities operating on Lovász number

نویسندگان

  • Denis Cornaz
  • Philippe Meurdesoif
چکیده

If G is a triangle-free graph, then two Gallai identities can be written as α(G)+ χ(L(G)) = |V (G)| = α(L(G))+ χ(G), where α and χ denote the stability number and the clique-partition number, and L(G) is the line graph of G. We show that, surprisingly, both equalities can be preserved for any graph G by deleting the edges of the line graph corresponding to simplicial pairs of adjacent arcs, according to any acyclic orientation of G. As a consequence, one obtains an operator which associates to any graph parameter β such that α(G) ≤ β(G) ≤ χ(G) for all graph G, a graph parameter β such that α(G) ≤ β(G) ≤ χ(G) for all graph G. We prove that θ(G) ≤ θ(G) and that χ f (G) ≤ χ f (G) for all graph G, where θ is Lovász theta function and χ f is the fractional clique-partition number. Moreover, χ f (G) ≤ θ(G) for triangle-free G. Comparing to the previous strengthenings θ and θ+ of θ , numerical experiments show that θ is a significant better lower bound for χ than θ .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional aspects of the Erdös-Faber-Lovász Conjecture

The Erdős-Faber-Lovász conjecture is the statement that every graph that is the union of n cliques of size n intersecting pairwise in at most one vertex has chromatic number n. Kahn and Seymour proved a fractional version of this conjecture, where the chromatic number is replaced by the fractional chromatic number. In this note we investigate similar fractional relaxations of the Erdős-Faber-Lo...

متن کامل

Gallai and Anti-gallai Graphs of a Graph

The paper deals with graph operators—the Gallai graphs and the anti-Gallai graphs. We prove the existence of a finite family of forbidden subgraphs for the Gallai graphs and the anti-Gallai graphs to be H-free for any finite graph H. The case of complement reducible graphs—cographs is discussed in detail. Some relations between the chromatic number, the radius and the diameter of a graph and it...

متن کامل

Copositive programming motivated bounds on the stability and the chromatic numbers

The Lovász theta number of a graph G can be viewed as a semidefinite programming relaxation of the stability number of G. It has recently been shown that a copositive strengthening of this semidefinite program in fact equals the stability number of G. We introduce a related strengthening of the Lovász theta number toward the chromatic number of G, which is shown to be equal to the fractional ch...

متن کامل

Lower Bounds for Measurable Chromatic Numbers

The Lovász theta function provides a lower bound for the chromatic number of finite graphs based on the solution of a semidefinite program. In this paper we generalize it so that it gives a lower bound for the measurable chromatic number of distance graphs on compact metric spaces. In particular we consider distance graphs on the unit sphere. There we transform the original infinite semidefinit...

متن کامل

A From Sylvester-Gallai Configurations to Rank Bounds: Improved Blackbox Identity Test for Depth-3 Circuits

We study the problem of identity testing for depth-3 circuits of top fanin k and degree d. We give a new structure theorem for such identities that improves the known deterministic d O(k) -time blackbox identity test over rationals (Kayal & Saraf, FOCS 2009) to one that takes dO(k 2)-time. Our structure theorem essentially says that the number of independent variables in a real depth-3 identity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 144  شماره 

صفحات  -

تاریخ انتشار 2014